Effect of supporting electrolytes on the positions of outer-sphere charge-transfer bands in electronic absorption spectra

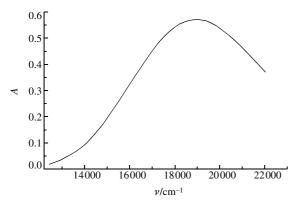
Sof'ya A. Kostina,^a Vitalii Yu. Kotov*^a and Galina A. Tsirlina^b

^a Higher Chemical College, Russian Academy of Sciences, 125047 Moscow, Russian Federation. Fax: +7 095 200 4204

Fax: +7 095 939 0171; e-mail: tsir@elch.chem.msu.ru

10.1070/MC2001v011n03ABEH001441

The positions of the outer-sphere charge-transfer bands in the electronic absorption spectra of the EV^{2+} – $[Fe(CN)_6]^{4-}$ system depend on the nature and concentration of supporting-electrolyte cations.


Aromatic N-heterocyclic cations are convenient objects for studying electron-transfer processes. 1-5 The simultaneous presence of these cations and electron-donor anions in aqueous solutions results in the appearance of charge-transfer bands in electronic absorption spectra (EAS). The N,N'-dialkyl-4,4'-bipyridinium (alkyl viologen)-hexacyanoferrate(II) systems are most informative for studying electron-transfer processes. A band due to the outer-sphere charge transfer (OSCT) from the [Fe(CN)₆]⁴ ion to an aromatic cation is observed^{1,3} at 18000–20000 cm⁻¹, where the self-absorption of ions is practically absent. A change in the supporting-electrolyte composition affects the positions of bands. The observed shift of band maxima was assumed^{1,3} to result from the fact that, in addition to the ion pairs MV2+, [Fe(CN)₆]⁴⁻ (MV²⁺ is methylviologen), associates in which two [Fe(CN)₆]⁴ ions are accounted for one MV²⁺ cation or *vice versa* can be formed in this system. In this work, we studied the effect of supporting electrolytes on the position of OSCT bands in associates that include the $[Fe(CN)_6]^{4-}$ ion and a homologue of MV^{2+} , the *N*,*N*′-diethyl-4,4′-bipyridinium cation (ethylviologen, EV²⁺).

The compound $EV_{1.5}K[Fe(CN)_6]\cdot 12.5H_2O$ was isolated by the isothermal evaporation (T = 277 K) of a solution of potassium hexacyanoferrate (analytical grade) and N,N'-diethyl-4,4'-bipyridinium iodide (Aldrich) in the 1:1 molar ratio.

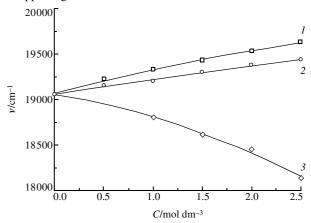
The EAS of freshly prepared solutions in twice-distilled water were measured on a Specord M400 spectrophotometer (Germany) in 1 cm quartz cuvettes at 298 K.

Cyclic voltammograms were recorded on a PARC 273 potentiostat using a glassy carbon electrode at the potential scan rate $v = 5-100 \text{ mV s}^{-1}$. A saturated calomel electrode was used as the reference electrode. From -0.92 to +0.60 V, the heights of current peaks were proportional to $v^{1/2}$. This fact allowed us to attribute these currents to redox processes uncomplicated by adsorption and chemical stages. Therefore, the half-wave potential ($E_{1/2}$) was determined by averaging the potentials of anodic and cathodic peaks. The potentials were given with reference to a normal hydrogen electrode.

The absorption band in the test system appears in the same spectral range as the bands observed previously. 1-3

Figure 1 Electronic adsorption spectrum of the ion associate EV²⁺, nK⁺, [Fe(CN)₆]⁴⁻ in an aqueous solution at 298 K, $C_{\rm [Fe(CN)_6]} = 0.109$ mol dm⁻³, $C_{\rm EV} = 0.01$ mol dm⁻³.

Table 1 Half-wave potentials of $[Fe(CN)_6]^{3-4-}$ and $EV^{2+/+}$ pairs, reorganization energies and OSCT band energies for $EV_{1.5}K[Fe(CN)_6]$ (0.02 mol dm⁻³) in the presence of supporting electrolytes (1 mol dm⁻³).


Supporting electrolyte	E _{1/2} (EV ^{2+/+})/V	$E_{1/2} \{ [\text{Fe}(\text{CN})_6]^{3-/4-} \} / \text{V}$	$\Delta E_{1/2}/\mathrm{V}$	E_{hv}/eV	χ/eV
no electrolyte			0.80^{a}	2.30	1.56
Et ₄ NBr	-0.41	0.30	0.71	2.22	1.55
Me ₄ NCl	-0.42	0.38	0.80	2.28	1.52
EtNH ₃ Cl	-0.41	0.45	0.86	2.34	1.52
Me ₂ NH ₂ Cl	-0.41	0.45	0.86	2.36	1.54
NaCl	-0.42	0.46	0.88	2.37	1.53
MeNH ₃ Cl	-0.42	0.46	0.88	2.39	1.55
KBr	-0.42	0.47	0.89	2.39	1.54
KCl	-0.43	0.47	0.90	2.39	1.53
NH ₄ Cl	-0.43	0.47	0.90	2.40	1.54

^aThe value corresponds to the standard-potential difference.

In the visible range, the EAS of $EV_{1.5}K[Fe(CN)_6]$ (0.02 mol dm⁻³) has a band at 18520 cm⁻¹:

$$EV^{2+}$$
, $[Fe(CN)_6]^{4-}$ $\xrightarrow{h\nu}$ EV^+ , $[Fe(CN)_6]^{3-}$.

The position of the band maximum remained unchanged when the solution was diluted to a concentration of 0.0028 mol dm $^{-3}$. When supporting electrolytes were added to the system, the position of the band maximum changed. Thus, the EAS of an aqueous solution containing 0.01 mol dm $^{-3}$ EVI $_2$ and 0.109 mol dm $^{-3}$ K $_4$ [Fe(CN) $_6$] (Figure 1) has an OSCT band at 19060 cm $^{-1}$. The addition of KCl or NaCl to this solution resulted in a greater shift of the band to the high-frequency region of the spectrum (Figure 2). The addition of Me $_4$ NCl to the system shifted the band in the opposite direction (Figure 2). As a result, in solutions of equal ionic strength, the positions of OSCT bands differed by 1400 cm $^{-1}$ (\sim 0.2 eV). The tendency illustrated by Figure 2 is similar to the dependence of the formal redox potential of a hexacyanoferrate system on the nature and concentration of supporting cations. $^{6.7}$

Figure 2 Dependence of the position of the OSCT band of an ion associate in an aqueous solution on the supporting-electrolyte concentration. The conditions are specified in Figure 1. (I) KCl, (2) NaCl and (3) Me₄NCl.

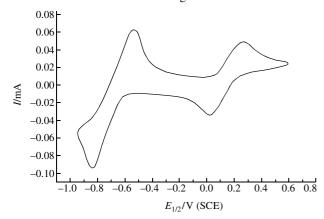
^b Department of Chemistry, M. V. Lomonosov Moscow State University, 119899 Moscow, Russian Federation.

Table 2 The difference between half-wave potentials of redox processes, reorganization energies and the optical transition energy for the ion pair EV²⁺,[Fe(CN)₆]⁴⁻ in an aqueous solution as functions of the concentration of potassium chloride (Figure 2).

KCl concentration/ mol dm ⁻³	$\Delta E_{1/2}/\mathrm{V}$	E_{hv}/eV	χ/eV	
0.0	0.87	2.36	1.53	
0.5	0.89	2.38	1.53	
1.0	0.90	2.40	1.53	
1.5	0.91	2.41	1.53	
2.0	0.92	2.42	1.53	
2.5	0.92	2.43	1.54	

We determined the $E_{1/2}$ of the pairs $[\mathrm{Fe}(\mathrm{CN})_6]^{3-/4-}$ and $\mathrm{EV}^{2+/+}$ in solutions containing simultaneously both reactants and different supporting electrolytes by voltammetry (Figure 3; Table 1, columns 2–4). The difference of $E_{1/2}$ for two redox systems demonstrated the same dependence on the cation nature as reported earlier for hexacyanoferrate.^{6,7} It results from the fact that for $\mathrm{EV}^{2+/+}$, the $E_{1/2}$ are practically independent of the nature of supporting-electrolyte cations and amount to $-0.42\pm0.01~\mathrm{V}$. Table 1 also compares the difference in $E_{1/2}$ with the energies of OSCT bands in the same solutions. An increase in the $E_{1/2}$ difference in the system leads to a corresponding increase in E_{hv} The relationship between the redox-pair potential⁷ and the E_{hv} was also observed when we varied the supporting-electrolyte concentration (Table 2).

Within the framework of the classical Marcus–Hush theory, we can write the following expression for the optical transition energy:^{8,9}


$$E_{h\nu} = \Delta E^0 + U_{\rm p} - U_{\rm r} + \chi_i + \chi_{\rm O} + F_{\chi}. \label{eq:energy}$$

Here, ΔE^0 is the free energy of the reaction; $U_{\rm p}$ and $U_{\rm r}$ are the electrostatic work terms for products and reactants, respectively; χ_i , χ_0 and F_{χ} are the components of reorganization energy corresponding to the intramolecular degrees of freedom, the solvent, and the ionic atmosphere, respectively.

A constant half-width of bands (5700 cm⁻¹) gives evidence for the same reorganization energy ($\chi = \chi_i + \chi_O + F_\chi$) for all test systems. The value of ($U_p - U_r$) calculated for the studied range of supporting-electrolyte concentrations is low (0.02–0.04 eV) and independent of the nature of cations. Thus, ΔE^0 makes the main contribution to the change in $E_{h\nu}$. This result can be explained, if we assume that this ionic associate includes the supporting-electrolyte cations, for example:

$$EV^{2+}$$
, K+, $[Fe(CN)_6]^{4-}$ \xrightarrow{hv} EV^+ , K+, $[Fe(CN)_6]^{3-}$.

It also agrees with the data of X-ray diffraction analysis of $EV_{1.5}K[Fe(CN)_6]\cdot 12.5H_2O.^{10}$ The standard redox potential of the hexacyanoferrate pair is equal to 0.355 V.⁶ For the pair $K^+,[Fe(CN)_6]^4-/K^+,[Fe(CN)_6]^3-$, the potential is 0.41 V, if we take into account data from refs. 6, 11. To explain the dependence of the energy of OSCT band maximum on the supporting-electrolyte concentration (Figure 2), it should be taken into account that a solution with a high alkali-metal concentration

Figure 3 Cyclic voltammogram of a solution of $EV_{1.5}K[Fe(CN)_6]$ (0.02 mol dm⁻³) in Me_4NCl (1 mol dm⁻³); the potential scan rate is 5 mV s⁻¹.

can contain associates with several cations in the periphery of $[Fe(CN)_6]^{4-}$ ion, 6,7,11 for example:

$$EV^{2+}$$
, nK^+ , $[Fe(CN)_6]^{4-} \xrightarrow{hv} EV^+$, nK^+ , $[Fe(CN)_6]^{3-}$.

In conclusion, a number of factors (solvent,⁴ pressure¹² and temperature¹) affects the position of the OSCT band maximum of the EV^{2+} – $[Fe(CN)_6]^4$ – system, and a shift of the redox potential was responsible for all these effects. The nature and concentration of supporting-electrolyte cations were also found to affect the band maximum positions.

This work was supported by the Russian Foundation for Basic Research (grant no. 99-03-32367).

References

- J. C. Curtis, B. P. Sullivan and T. J. Meyer, *Inorg. Chem.*, 1980, 19, 3833
- 2 H. E. Toma, Can. J. Chem., 1979, 57, 2079.
- 3 A. Nakahara and J. H. Wang, J. Phys. Chem., 1963, 67, 496.
- 4 A. M. Kjær, I. Kristjansson and J. Ulstrup, J. Electroanal. Chem., 1986, 204, 45.
- 5 S. A. Kostina, I. F. Golovaneva and V. Yu. Kotov, Zh. Neorg. Khim., 2001, 46, 470 (in Russian).
- 6 G. I. H. Hanania, D. H. Irvine, W. A. Eaton and P. George, J. Phys. Chem., 1967, 71, 2022.
- 7 D. Krulic, N. Fatouros and D. E. Khostariya, J. Chim. Phys., 1998, 95, 497
- 8 E. D. German and A. M. Kuznetsov, *Elektrokhimiya*, 1992, **28**, 294 [*Sov. Electrochem. (Engl. Transl.)*, 1992, **28**, 240].
- E. D. German and A. M. Kuznetsov, *Elektrokhimiya*, 1987, 23, 1671
 [Sov. Electrochem. (Engl. Transl.), 1987, 23, 1560].
- S. A. Kostina, A. B. Ilyukhin, B. V. Lokshin and V. Yu. Kotov, Mendeleev Commun., 2001, 12.
- W. A. Eaton, P. George and G. I. H. Hanania, J. Phys. Chem., 1967, 71, 2016.
- 12 W. S. Hammack and H. G. Drickamer, Chem. Phys. Lett., 1988, 151, 469

Received: 9th February 2001; Com. 01/1767